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CHANGES IN KIT FOX-COYOTE-PREY RELATIONSHIPS
IN THE GREAT BASIN DESERT, UTAH

Wendy M. Arjo!, Eric M. Gese2, Tim J. Bennett3, and Adam J. Kozlowski

ABSTRACT.—Variation in kit fox (Vulpes macrotis) population parameters can be influenced by vegetative cover and
the distribution and abundance of other predator and prey species. Dramatic changes to Great Basin Desert habitats,
which can potentially impact mammalian species, have occurred in some areas in Utah, We examined kit fox demo-
graphics and prey populations from 1999 to 2001 on Dugway Proving Ground (DPG), a U.S. Army facility in Utah, and
compared some parameters to historical levels (1956-1958, 1966-1969). Adult survival rates were fairly consistent
between 1999 and 2000 and between 1999 and 2001; however, survival was greater in 2001 than in 2000. Reproductive
rates ranged from 1.0 to 3.8 pups per female in 1999-2000 and were similar (o historical numbers (1.0-4.2 pups per
female). We found a decrease in pre-whelping kit fox density from the 1960s (0.12 foxes - km2) to 1999-2001 (0.04 foxes
- km~2); however, densities were similar between the current study and the 1950s (0.08 foxes - km-2). Using 9 years of
data, we found density dependence between reproductive rates of the current year and annual fox density from the pre-
vious year. Using 7 years of data, we found a slight correlation between kit fox annual density and a 1-year lag in leporid
abundance, even though leporid abundance was lower during the present study than it was historically. Compared to
historical levels, current small mammal abundance and species composition has changed in several habitats. Kit fox
breeding density and annual density were inversely correlated with coyote (Canis lairans) density. Changes to the land-
scape at DPG, especially due to invasion of cheatgrass (Bromus tectorim) and addition of artificial water sources, have
caused a change in available kit fox habitat and prey species, and have increased the abundance of coyotes, the kit fox’s
major competitor.
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Kit fox (Vulpes macrotis) populations are (White and Garroted 1997, White and Garroted
often characterized as fluctuating dramatically 1999, Dennis and Often 2000). However, kit
from year to year (Cipher and Scrivener 1992, foxes are also dependent on other prey species
White and Walls 1993, Cipher and Spencer (Zoellick and Smith 1992, White et al. 1995,

" 1998, White and Garroted 1999). Natural forces ~ Cipher et al. 2000), such as kangaroo rats (Dipo-
affecting carnivore population demographics domys spp.), yet the relationship between fox
and viability include short- and long-term density and small mammal abundance has

changes in prey abundance and availability
(Fuller and Savored 2001) and competition with
other predator species. For example, on the
Carrizo Plain Natural Area in California, a de-
crease in breeding kit foxes was observed fol-
lowing a decrease in prey availability (White
and Walls 1993). Spiegel and Disney (1996)
also documented a decrease in the proportion
of females successfully rearing pups during a
period of low prey availability in Kern County,
California. '

Leporids are considered the main prey of
kit foxes (White and Garroted 1997), and sev-
eral studies document the relationship be-
tween leporid density and kit fox density

rarely been examined. Kit fox home ranges
tend to be small and they overlap in areas with
large abundant prey such as leporids (O'Neal
et al. 1987, Zoellick et al. 1989, White and
Walls 1993), but home ranges are large and
exclusive when small nocturnal rodents are
the primary prey source (Zoellick and Smith
1992).-

Behavioral spacing mechanisms (White and
Garroted 1997) and populations of competing
predators (Cipher and Scrivener 1992, White
et al. 1995; Cipher and Spencer 1998) may act
in concert to regulate kit fox densities. How-
ever, resources must first be limited for social
behavior to regulate populations (Pierce et al.
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2000). Intraspecific behavioral spacing mecha-
nisms, which limit recruitment of juveniles
and immigrants into the population (White
and Garroted 1999), in addition to interspe-
cific competition for habitat with coyotes
(Canis latrans), can affect kit fox population
size. Direct competition with coyotes for food
resources has been documented in several
studies (Cipher et al. 1994, White et al. 1995,
Cipher and Spencer 1998). In addition, coy-

otes are the main source of mortality in several

kit fox populations (Cipher and Scrivener
1992, Walls and - White 1995, Cipher and
Spencer 1998).

Egoscue (1956, 1962, 1975) documented kit
fox densities and reproduction on Dugway
Proving Ground (DPG), a U.S. Army facility in
Utah, during and following its inception as a
military testing site. Several other studies at
the time also documented leporid abundance
and vegetation communities and their associ-
ated small mammal assemblages (Vest 1962,
Ebéerhardt and Van Voris 1986). Since these
early studies, dramatic changes to DPG’s habi-
tat composition have occurred. Although not
historically present as a community type, annual
grasslands of mostly exotic annuals have in-
vaded and dominated large areas of DPG. Over
60% of the original mixed-brush community
described by Vest (1962) and 40% of the juni-
per-brush community have been replaced by
exotics (DPG unpublished data). Disturbance
from natural and human-caused fires and from
military maneuvers have allowed displacement
of natural vegetation by exotic annuals such as
cheatgrass (Bromus tectorum), tumbling mus-
tard (Sisymbrium altissimum), Russian thistle
(Salsola iberica), and peppercress (Lepidium
perfoilatum). These changes to the habitat have
affected the distribution, abundance, and diver-
sity of small mammals (Carpenter and Arjo
1999), which in turn may affect kit fox repro-
ductive success and population size (White
and Walls 1993, Cipher et al. 2000) and may
increase competition with other predators.

Although the kit fox population on DPG is
not endangered like the San Joaquin kit fox (V.
macrotis mutica) population, kit fox is a
“species of concern” to wildlife managers on
DPG. Kit fox was the most common carnivore
on DPG through the 1960s (Egoscue 1975);
however, recent observations suggest that
populations of leporids and kit fox are declin-
ing, while coyotes are increasing. We exam-
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ined kit fox demographics and the relation-
ships of kit fox with both small mammal and
leporid prey species. In addition, we compared
historical kit fox abundance, coyote abundance,
and prey data to the current study to determine
if changes in predator-predator and predator—
prey relationships have occurred in the last 30
years.

STUDY AREA

Dugway Proving Ground is located 128 km
southwest of Salt Lake City in Tooele County,
Utah, and covers 3330 km? of Great Basin
Desert habitat. Elevation ranges from 1288 m
on the salt playa flats to 2154 m in mountain- -
ous areas. Due to its midlatitude location, this
arid region is often characterized as cold desert.
Winters are usually cold, and summers are hot
and dry, with the majority of the precipitation
falling in spring. Average maximum tempera-
tures on DPG range from 3.3°C in January to
34.7°C in July. Average minimum tempera-
tures range from —8.8°C in January to 16.3°C
in July. Mean annual precipitation is 20.07 cm.

Most of DPG consists of salt playa flats,
remnants from Lake Bonneville, sparsely veg-
etated with pickleweed (Allenrolfea occiden-
talis). Playa areas, with more developed soils,
less salt, and more moisture, support advanced
seral stages of halophytic cold«desert shrub
communities. Low shrubby shadscale (Atriplex
confertifolia) and gray molly (Kochia ameri-
cana) are characteristic of the cold-desert
chenopod community. Greasewood (Sarcoba-
tus vermiculatus) is often associated with these
shrubs, as well as mound saltbush (Atriplex
gardneri) and Torrey seepweed (Suaeda tor-
reyana). A slight increase in elevation and a
greater retention of water led to more diverse
habitats on DPG, namely the vegetated sand
dunes. Several varieties of shrubs, including
fourwing saltbush (Atriplex canescens), grease-
wood, viscid rabbitbrush (Chrysothamnus vis-
cidiflorus), hopsage (Grayia spinosa), dune
rabbitbrush (C. nauseosus var. turbinatus), shad-
scale, and horsebrush (Tetradymia glabrata),
are found in the dunes. Forbs, native perenni-
als, and grasses are also common in the vege-
tated dunes. Interspersed in the flat terrain
are steep mountain ranges that are cooler and
more mesic. Shrubsteppe communities occur
at the bases of the higher mountains, and along
the slopes of the smaller mountains, and these
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communities are dominated by sagebrush (Arze-
nisia spp.), viscid rabbitbrush, Nevada ephedra
(Ephedra nevadensis), greasewood, and shad-
scale. At higher elevations and through portions
of the vegetated dunes is the Utah juniper
(Juniper osteosperma) community. Often asso-
ciated with this community is black sagebrush
(Artemisia nova) and bluebunch wheatgrass
(Elymus spicatus).

In addition to kit fox and coyote, other car-
nivores include cougar (Puma concolor), bob-
cat (Lynx rufus), and more recently, red fox (V.
vulpes). Although pronghorn (Antilocapra ameri-
cana) and mule deer (Odocoileus hemionus)
are present on DPG, these are not considered
- prey for kit fox, but they ‘may be ingested as
carrion. Prey species include black-tailed jack-
rabbit (Lepus californicus), mountain cotton-
tail (Sylvilagus nuttalli), woodrats (Neotoma
spp.), and several species from the families
Heteromyidae and Muridae.

METHODS
Kit Fox Demographics

We trapped around known kit fox dens and
in areas of suspected occupancy and com-
bined those trapping data with data from tran-
sect trapping surveys (Schauster et al. 2002)
conducted from December 1998 through Feb-
ruary 2001 within a 264-km?2 area of DPG.
This area encompassed Egoscue’s original 65-
km? study site (Egoscue 1956) and 104 km?2
from his 1962 study site (Egoscue 1962, 1975).
Kit foxes were captured with double-door box
traps (80 x 25 X 25 cm; Tomahawk Live Trap
Company, Tomahawk, WI) that were baited
with raw chicken or bacon. Traps were deployed
in the evening and checked early each morn-
ing. Kit foxes were removed from the trap by
placing a cotton bag over 1 end of the trap and
coaxing the fox into the bag. Once the animal

“was secured in the bag, it could be removed
and handled without the use of drugs. Foxes
were sexed, weighed, measured, and then aged
based on tooth wear and body size. Kit foxes

were considered juveniles until the breeding -

season (15 Dec) following their birth, at which
timé they were considered adults. Each kit fox
that weighed >1 kg was fitted with a mortal-
ity-sensor transmitter weighing 30-50 g (Holi-
hil, Toronto, Canada, or Advanced Telemetry
Systems, Isanti, MN). Animals were examined
for external wounds and parasites, and any lac-
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erations were treated with antiseptic. All kit
foxes were released at the capture site.

We used a portable receiver (Telonics, Inc.,
Mesa, AZ) and a handheld 3-element Yagi
antenna to locate animals 23 times a week. In
addition, aerial locations were obtained approx-
imately every 3 weeks. Telemetry procedures
followed recommendations by White and Gar-
roted (1990). Fox locations were triangulated
using the LOCATE (Pacer, Truro, Nova Sco-
tia) software package with 22 bearings taken
<10 minutes apart. To minimize triangulation
error, bearings that intersected at <20° or 2160°
were censored from the analyses (Gese et al.
1988). We monitored radio-marked foxes to
determine causes of mortality. The possible
cause of mortality was determined by examin-
ing the carcass for external and internal injuries,
puncture wounds, and hemorrhaging. Physical
evidence at the site of mortality, such as tracks,
scat, or hair, also assisted us in determining
the possible cause of death. Annual survival
rates for 1999, 2000, and 2001, and for males
and females over the entire study period, were
extrapolated from daily survival rates using
MICROMORT (Heisey and Fuller 1985).

Kit fox densities were determined for the
overall study site by using a delineated study
area from a 100% minimum convex polygon
around locations (Pooele et al. 1996) divided
by the number of known kit foxes in that area.
Densities were determined as annual densities
(1999 and 2000) and pre-whelping densities
(animals present in the study area between 15

December and 14 April). We did not deter-

mine an annual density of kit foxes in 2001
because data could only be collected for 4
months. This method biases densities down-
ward due to uncaptured animals, but it is simi-
lar to methods used by Egoscue to estimate
densities. Reproductive rates were deter-
mined each spring through litter counts con-
ducted at dens. These reproductive rates are
conservative estimates because only pups that
emerged from the den were recorded.

Coyote Abundance

We determined coyote abundance from
historical and current records of aerial hunting
by USDA APHIS Wildlife Services in the
state of Utah. Coyote abundance was stan-
dardized by the number of coyotes taken per
hour of aerial hunting. Years for which hours
of hunting were not recorded were excluded
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from the analyses. We compared kit fox annual
and pre-whelping densities to coyote densities
using regression analysis (SAS®, version 8.0,
SAS Institute, Inc., Cary, NC).

Small Mammal Abundance

We determined small mammal densities for
2 time periods over 2 years; June and Septem-
ber. The 6 dominant habitats, which were
identified first by Vest (1962) and later rede-
fined by Emrick and Hill (1998), were trapped
with 3 replicates of each habitat: grassland
{exotic annuals), chenopod, pickleweed, vege-
tated dune, greasewood, and shrubsteppe. Kit
fox home ranges were known to incorporate
portions of each of these habitats (Arjo et al.
2003). When possible, we used the original
habitat study plots, which were identified by
Vest (1962) and were later used by AGEISS
(1997, 1998). We chose replicates, based on
vegetation maps produced by DPG, of the
habitats to increase our ability to accurately
reflect the abundance and diversity of small
mammal species in each habitat type.

A trapping grid for each replicate consisted
of 64 traps (H.B. Sherman Traps, Tallahassee,
FL) placed 10 m apart in an 8 x 8 grid. Each
trap was baited with a mixture of peanut but-
ter and oats, and each grid was active for a 4-
night period. Captured animals were identi-
fied, weighed, and sexed. Black hair dye or a
permanent marker was used to mark animals
before release. Historical trapping (Vest 1962,
AGEISS 1997, 1998) was conducted on a 14 x
14 grid for 8 consecutive nights. To compare
current and historical small mammal data, only
the first 4 nights of historical trapping data
were used. In addition, we weighted the num-
ber of small mammal captures for each time
period based on size of the trapping grid.

A Kruskal-Wallis test (H) for nonparametric
data was used to determine if the abundances
of small mammals were similar in each habitat
replicate for the current trapping effort. If
replicates were similar, we pooled habitat
replicates to describe specific habitats across
DPG. We used ANOVA to test for differences
in abundance between the habitats for each
season and year (1999 and 2000; Zar 1996).
Tikey’s multiple comparison tests were used
to identify differences within the levels of sig-
nificant variables. Shannon diversity indices
(H') were calculated for each habitat type and
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compared between current habitat types and
between Vest's 1956/1957 data using a ¢ test
(Zar 1996).

Historical small mammal abundance data
(Vest 1962) in each habitat were not replicated
and trap-night effort varied; therefore, statisti-
cal comparisons between historic and current
data were not possible. We used an index stan-
dardized by individuals per trap-night to
graphically represent changes in small mam-
mal abundance in the 4 habitats. We used lin-
ear regression to determine if kit fox densities
were correlated with small mammal indices,
and if reproductive rates were correlated with
small mammal indices using both our data and
historical fox data (Egoscue 1962, 1975; H.
Egoscue unpublished data). We compared small
mammal indices from the spring and summer
to determine if the previous year’s precipita-
tion influenced densities. Precipitation infor-
mation was collected from a weather station
established at the Ditto Area on DPG. In addi-
tion, kit fox reproductive rates, pre-whelping
densities, and annual densities were compared
to small mammal indices.

Leporid Abundance

Leporid populations, which consisted of only
jackrabbits, were estimated using quarterly
spotlight surveys along 6 transects from May
1999 through May 2001. Surveys were con-
ducted for 3 nights with 2 minimum of 1 night
between surveys to minimize any influence of
weather. Only 2 surveys were conducted in
2001 (February and May) due to the comple-
tion of the study. Surveys began no earlier
than 1 hour after sunset. The number of lep-
orids per kilometer was determined as an
average for the 3 nights. Daytime surveys for
leporids were conducted from 1965 through
1985 in March and August. We did not con-
tinue to conduct daylight surveys during the
current study because of the low numbers of
rabbits observed during this time (Arjo personal
observation). Differences in leporid abundances
between pre- and postreproductive seasons
(May and August) along the 6 transects were
determined using ANOVA (SAS®, version 8.0,
SAS Institute, Inc., Cary, NC). We performed
linear regression using both our data and his-
torical fox data (Egoscue 1962, 1975; Egoscue
unpublished data) to determine if kit fox den-
sities or reproductive rates were correlated with
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TABLE 1. Survival rates for adult kit foxes of known and unknown fates on Dugway Proving Ground, Utah, 1999-2001.

Kit foxes of known fale

Kit foxes of unknown fate

L Lo Ly L
" Interval n Rate  Variance  (lower)*  (upper) n Rate  Variance  (lower)®  (upper)
Study period :
Males 10 0.322 0.0403 0.09 1.0 13 0.108 0.00897 0.019 -0.603
Temales 9 1.0 —_— — — 9 0.502  0.0299 0.256 0.986
Annual
1909 13 0.853 0.0184 0.624 1.0 15 0.556  0.02665 0.312 0.988
2000 11 0.711 0.0196 0.483 1.0 15 0.517  0.01663 0.317 0.842
2001 11 1.0 — — — 1] 1.0 — — —_—

495% confidence limits

August leporid abundance. We used precipita-
tion data gathered at DPG to examine the
influence of precipitation on leporid abun-
dance. Kit fox reproductive rates, pre-whelping
densities, and annual densities were compared
to August leporid densities. Small mammals
and leporids depend on vegetation and seed
production, and in drought years, vegetative
growth may be diminished, which in turn
affects rodent densities through decreased
reproduction. We used a 1-year lag to account
for the numerical response of leporids to vege-
tative growth. .

RESULTS

Kit Fox Demographics

We captured 27 kit foxes, 10 females and 17
males, from December 1998 through February
2001. Twenty adults and 7 juveniles were
radio-collared and monitored. Two of the juve-
niles were also monitored as adults. Predation
accounted for 5 kit fox deaths. We also recov-
ered the collars from 2 additional adult kit
foxes. Puncture marks and blood were found
on 1 of these collars from a female, and we
assumed that she was killed by a predator, We
were unable to determine the fate of the other
animal. Signals of 4 adults were lost, and these
animals were never recovered, trapped, or
seen again.

Male survival rates were significantly less
than female survival rates over the entire
study period (z = 3.38, P = 0.0004; Table 1).
Adult annual survival rate was consistent be-
tween 1999 and 2000, and between 1999 and
2001; however, kit fox survival was greater in
2001 than in 2000 (z = 2.06, P = 0.02). Female
- survival for the entire study was reduced from

1.0 to 0.502 when we considered unknown
fates (e.g., loss of radio signals or collars recov-
ered without the associated individual) of ani-
mals as mortalities (z = 2.8, P = 0.002). Male
overall survival changed very little when
unknown fates were considered (known fate:
0.322; unknown fate: 0.108).

We only tracked the fates of a few juveniles
(n = 5 males and 2 females) because of the
poor weather during the early trapping season
(July or August). We monitored 1 juvenile male
for 2 years until we lost the signal. Because we
were unable to‘locate his signal during tel-
emetry flights over a 20-km radius from his
last known location, it is likely his transmitter
failed. Another juvenile male was killed by a
coyote a few days after capture. One juvenile
-femalé survived the duration of the study, and
the other was killed by a coyote before she
reached 1 year of age. Three juvenile males
dispersed south and east from DPG. We re-
covered the collar from 1 of these juveniles,
but we were unable to determine the cause of
death for another. During a telemetry flight,
we located the 3rd juvenile >25 km south of
DPG shortly before his signal was lost.

We documented a decrease in pre-whelp-
ing kit fox density from the 1960s (0.12 foxes -
km=2) to 1999-2001 (0.04 foxes - km2). Repro-
ductive rates were lower in 1999 than they
were in the following 2 years (}2 = 7.26, df =
2, P = 0.03), when they were relatively con-
stant (x2 = 1.16, df = 1, P = 0.3; Table 2).
Though we tried to observe dens of every col- -
lared female in 1999, only 1 female was seen
with pups. We believed that a playa flats pair
had pups in 2000 because of the excavation
activity at the den, but the pair abandoned the
site in early May after a bomb exploded dur-
ing army activities close to their den. Although
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TaBLE 2. Historical and recent kit fox demographics and prey abundance indices on US. Army Dugway Proving

Ground, Utah.

Number of Number of Reproductive rate Spring small Fox density-

Year females pups (pups per female) mammal index breeding
1055 5 21 4.2 — 0.06
1956 4 4 1.0 0.1 0.15
1957 4 3 0.75 0.07 0.03
1958 5 9 1.8 — 0.09
1966 11 30 2.72 0.27a 0.14
1967 10 15 1.5 0.05b 0.12
1968 8 11 1.4 0.27¢ 0.11
1969 4 10 2.5 0.34d 0.11
1996 6 12 2.0 0.02 —
1997 4 8 2.0 0.01 0.02
1999 5 5 1.0 0.07 0.03
2000 7 15 2.14 0.07 0.06
2001 5 19 3.8 — 0.05

2F & E Research Group 1967

E & E Research Group 1968
CE & E Research Group 1969
dE & B Research Group 1970

no pups were seen with this pair in 2000, they
produced 3 pups in 2001.

Reproductive rates in our study were com-
parable to historical reproductive rates (Fg g3
= 0.92, P = 0.5). Though current pre-whelp-
ing fox densities were lower than 1960 densi-
ties (t = 8.88, P = 0.001), current fox pre-
whelping densities were similar to densities
observed in the 1950s (t = 1.80, P = 0.17).
Reproductive rates were inversely related to
annual fox density from the previous year (Fig.
1; B2 = 0479, F; = 6.45, P = 0.04). How-
ever, when the data point for 2001 was
removed, this relationship was no longer sig-
nificant (R2 0.031, F g = 0.191, P = 0.68).
We recognize the limitation of short-time data
series and the influence of outlying points as a
bias on small sample sizes. However, the data
point is a reflection of increasing reproductive
rates and represents all the known breeding
females in the study area. In addition, although
these density estimates were calculated from
known animals and pup counts were made
from observation of emergence, a method
which may produce unknown bias, these data
represent survival of pups, and therefore may
at worst have underrepresented reproductive
rates.

Coyote Abundance

Coyote populations, as indexed by aerial
hunting efforts, increased in the state of Utah
(Fig. 2; n = 37, r = 0.086, P < 0.001).
Observed increase in the coyote population
may be in response to changes in predator

management policies with the removal of
compound 1080 (sodium fluoroacetate) for
predator control. Information on coyote densi-
ties on or near DPG was not available, but we
assumed that coyote densities at DPG mimic-
ked statewide trends. Both kit fox pre-whelp-
ing density (F) g = 86.53, P < 0.001) and kit
fox annual density (F 1.4 = 8.03, P = 0.047)
were highly correlated with coyote density
(Fig. 3).

Small Mammal Abundance

In the spring of 1999, small mammal abun-
dance was lower in 1 greasewood plot com-
pared to the other 2 (H = 6.05, P = 0.04);
however, by the following trapping seasons,
this population increased. We observed differ-
ences among the chenopod habitats where 1
plot’s population declined in fall 1999 and did
not increase by fall 2000 (H = 6.30, P = 0.04;
spring 2000: H = 7.11, P = 0.02; summer
2000: H = 6.3, P = 0.04). The population on 1
stable dune plot also decreased dramatically.
Only 1 species, mountain cottontail (Sylvilagus
nuttalli), was captured in the stable dune plots
in spring 2000 (H = 7.98, P = 0.001), and
again, this population did not increase by late
summer 2000 (Fig. 4).

We found that small mammal abundance
differed _among habitat, season, and year
(Fag g5 = 273, P = 0.002), with year (P =
0.005) and habitat (P (P = 0.001) contributing
significantly to the model. Abundance of small
mammals in the shrubsteppe habitat was
greater (P < 0.05) than in all other habitats. In
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Fig. 1. Relationship between reproductive rate (pups
per breeding female) of current year and annual fox den-
sity from previous year, US. Army Dugway Proving
Ground, Utah.
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Fig. 2. Coyotes taken per hour of aerial hunting from
1961 through 2001 in Utah. Data from USDA APHIS
Wildlife Services.

addition, small mammal abundances in the
stable dune and greasewood habitats were
greater than in grasslands (P < 0.05). Species
composition among habitats also differed.
Species diversity in the stable dunes (H’ =
0.61) was greater than in all of the other habi-
tats in spring 1999 (shrubsteppe: P = 0.01;
greasewood: P = 0.003; grassland: P = 0.04;
and chenopod and pickleweed habitats: P =
0.001). Both the pickleweed and the chenopod
habitats in 1999, and the chenopod habitat in
2000, lacked species diversity (only 1 species
‘was captured). We did not capture any animals
in the grasslands in spring 2000. In spring
2000, both the stable dune and the shrub-
steppe habitats had greater species diversity
than the greasewood (P = 0.01, P < 0.001)
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Fig. 3. Relationship between annual numbers of coyotes
taken per hour in Utah versus kit fox density during the
breeding season (A) and annual kit fox density (individuals
- km-2) (B), U.S. Army Dugway Proving Ground, Utah.

and pickleweed habitats (P = 0. Ol P < 0.001),
respectively.

We found no difference in species diversity
in the greasewood plot between historical
trapping (H” = 0.55) and current trapping
periods (H’ = 0.53; ¢t = 0.14, P > 0.5). There
was also no difference between current diver-
sity in the pickleweed plot and historical
diversity. We only captured 1 species, deer
mouse (Peromyscus maniculatus), in the pick-
leweed habitat, whereas Vest (1962) also cap-

.tured white-tailed antelope squirrels (Ammo-

spermophilus leucurus) there. A difference in
species diversity was observed in the stable
dune plots (1956/1957: H'= 0.71; 1999/2000:
H’= 0.53;t =3.83, P < 0.001) and the shrub-
steppe habitats (1956/1957: H” = 0.62; 1999/
2000: H' = 0.47; ¢ = 2.11, P = 0.04). Vest (1962) -
captured 9 different species in the stable dunes,
and we only captured 5. In the shrubsteppe/
mixed-brush habitat, Vest (1962) captured 10
species and we captured 4. A sharp decrease
in small mammal abundance was observed in
1996 and 1997 (AGEISS 1998); however, the
populations appeared to increase slightly in
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Fig. 4. Index of small mammal abundance in 4 habitats during spring (A) and summer (B), U.S. Army Dugway Proving

Ground, Utah.

1999 as a result of generalist species like the
deer mouse. Small mammal indices in both
spring (r = 0.36, F} g = 1.2, P = 0.31) and
summer (r = 0.26, Fl g = 0.63, P = 0.45) were
not correlated with precipitation from the cur-
rent year.

Leporid Abundance

Leporid abundance along the 6 transects
appeared to vary between pre- and postrepro-
ductive seasons (Fy; 15 = 2.18, P = 0.068). In
addition, leporid abundance varied among
years (F7 19 = 5.01, P = 0.01). Total May lep-
orid abundance was 0.45 * 0.18 (s) leporids -
km~! in 1999, and 0.17 + 0.04 leporids - km~!
in 2000. An increase in leporid abundance was
observed in 2001 (0.92 + 0.28 leporids - km1)
from 1999 abundance. Although leporid abun-
dance in August was greater than the abun-
dance observed in May, numbers were still

not near the historical values (Fig. 5). Histori-
cal leporid abundance ranged from a low in
1985 of 0.17 leporids - km~! to a high in 1971
of 4.96 leporids - km=1 in August and appeared
to fluctuate on a 10-year cycle (Fig. 5). The
highest number of leporids we recorded dur-
ing the August surveys was 1.03 leporids -
km— in 2000, which should have represented
the next peak in leporid density. We realize
the limitation of comparing night and day sur-
veys; however, the data still showed the dra-
matic decline in leporid densities by 2000
even when we used a more reliable technique
like spotlight surveys. Although 2000 showed
an upward trend in the leporid cycle, this
peak was 2 times lower than previous cyclic
highs (Fig. 5). Had we conducted these sur-
veys in the daytime, our results would have
been even lower.
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To compare data collected during previous
years (1966-1968, 1996-1997), we used August
surveys to calculate leporid abundance along 2
common transects. Leporid abundance ranged
from 0.7 to 1.1 leporids - km=! from 1966 to
1968 (Eberhardt and VanVoris 1986). Abun-
dance decreased to 0.39 + 0.04 and 0.15 lep-
orids - km~1 in 1996 and 1997, respectively
(TRIES 1997). Leporids appeared to increase
in 1999 and 2000 in this area, where abun-
dance averaged 1.0 leporids - km~! and 1.24
leporids - km1, respectively.

‘When we examined the influence of rainfall
on leporid abundance, we found no correla-
tion between leporid abundance (1966-1968,
1996-1997, and 1999-2001) and precipitation
for the same year (r = 0.061, F} g5 = 0.085, P
.. = 0.77), the previous year (r = 0.114, F} g3 =
0.305, P = 0.59), or the previous 2 years (r =
0.275, F) o3 = 1.88, P = 0.18).

Predator-Prey Relationships

Changes in prey abundance may induce

changes in predator demographics. We found -

that current leporid abundance was not corre-
lated with kit fox reproduction (r = 0.158,
F) ¢ = 0.227, P = 0.65) or current kit fox pre-
-whelping density (r = 0.382, F 7y = 1.20, P =
0.31); nor were there lag effects.of the previ-
ous year’s leporid abundance on fox reproduc-
tion (P = 0.487) or density (P = 0.122). How-
ever, annual fox densities and a 1-year lag in

leporid densities were slightly correlated (r =
0.82, F) g =4.92, P = 0.07). No correlation was
observed between the current year’s spring
small mammal densities and reproductive rates
(P = 0.32) or annual fox densities (P = 0.51).
Pre-whelping fox densities were slightly cor-
related with the spring small mammal indices
(P = 0.1) and the spring mammal indices from
the previous year (P = 0.08).

" DISCUSSION

Changes to the landscape of DPG, espe-
cially the invasion of cheatgrass and the addi-
tion of artificial water sources, have changed
the available kit fox habitat and prey species
and have increased the abundance of coyotes,
the kit fox’s major competitor and potential
predator. Habitat conversion from native Great
Basin shrub communities to an annual grass-
land monoculture is probably the most impor- -
tant factor that currently limits kit fox density
on DPG. Unlike in the 1950s when kit foxes
were distributed in the lowland greasewood
habitats, kit foxes that are presently on DPG
mainly inhabit the grasslands and shrubsteppe
of the highland areas and the less suitable
chenopod and pickleweed habitats of the
lowlands (Arjo et al. 2003, Kozlowski 2005).
Egoscue surveyed this highland area during
both his study periods, but never documented
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the presence of kit fox (Egoscue personal com-
munication). Warrick and Cipher (1998) re-
ported that a negative association between kit
fox captures and development was due to a
change in habitat or a direct loss of habitat.
Juvenile foxes disperse great distances, do not
establish territories on DPG, and have low
survivorship, all of which suggest that there is

limited available habitat or other limiting

resources.

Anthropogenic factors, high adaptability,
and a flexible social system have allowed coy-
otes to exploit habitats that they did not previ-
ously oceupy. The introduction of surface
water sources on DPG in the 1970s likely con-
tributed to the increase in coyote numbers,
which in turn affected kit fox den selection
(Arjo et al. 2003) and spatial distribution. Kit
foxes are able to live independently of free
water sources, whereas in the absence of avail-
able water, coyotes need to consume 3.5 times
the number of prey items that kit foxes do to
meet energetic requirements (Golightly and
Olimart 1984). Prior to about the 1970s, year-
round water sources consisted of approxi-
mately 9 natural springs to support wildlife.
The addition of anthropogenic sources from 3
sewage ponds, housing irrigation, and more
recently, wildlife catchment ponds has supple-
mented annual availability of water for
wildlife. Coyotes are supported by the man-
made water sources, as evidenced by the radi-
ation of all radio-collared coyote core areas
from permanent water sources such as the
sewage ponds (AGEISS 2001). The red fox
population increase observed from recent sight-
ings may also be due to the addition of man-
made water sources. Red foxes may provide an
additive negative effect on kit fox densities
because of the potential higher dietary overlap
(White et al. 1994, Walls and White 1995).

Most studies of kit fox—prey relationships
focus on 1 prey type: leporids. White and Gar-
roted (1997) found a positive correlation
between kit fox density and leporid density
using data from several studies. Leporids are
part of the kit fox prey base on DPG
(Kozlowski 2005), but leporids do not appear
to be as important as they were historically,
when they comprised >90% of the diet of kit
foxes (Egoscue 1962, 1975). Egoscue (1975)
determined kit fox diet based on prey remains
at dens, which may bias the results towards
larger prey items; therefore, a direct compari-
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son between historical and current {food re-
sources is not reasonable. Dramatic changes
in jackrabbit abundance on DPG, as well as
throughout the Great Basin Desert, from a high
of 4.96 leporids - km~! in 1971 to a low of 0.16
leporids - km~1 in 1997, may have contributed
to this change in kit fox diet. Although precipi-
tation has been documented to affect kit fox
populations indirectly through changes in prey
numbers (Cipher and Scrivener 1992, White
and Walls 1993, White et al. 1996, White and
Garroted 1997), we did not find a correlation
in DPG between precipitation and leporid
densities. Precipitation during the study was
comparable to other dramatic increases in pre-
cipitation which correlated to peaks in leporid
abundance the following year, yet leporid
numbers from 1999-2000 were significantly
depressed.

Food habits, determined from scats col-
lected from both kit foxes and coyotes, indi-
cate that nocturnal rodents and kangaroo rats,
with the addition of insects such as Mormon
crickets (Anabrus spp.) in the summer, make
up a large percentage of the kit fox prey base
(Kozlowski 2005). Kit foxes on DPG appear to
have switched prey in the last 30 years, proba-
bly due to the decline in jackrabbit popula-
tions, increased competition with coyotes, and
changes in habitat use. Increasing coyote
numbers, especially centered in the grease-
wood habitat, where jackrabbit densities are
the greatest, may be limiting availability of
this prey item to kit foxes. Although coyotes
also rely on rodents and kangaroo rats, rabbits
are an important 3rd component of their diet
(Kozlowski 2005). We found an increase in
small mammal abundance during 1999-2000,
up from 1997 and 1998; however, abundance
was still lower and species diversity was still
reduced in several of the habitats compared to
abundance in the 1950s. Overall small mam-
mal abundance remained relatively stable due
to the increase in numbers of habitat general-
ists like deer mice. Limited availability of small
mammals in exotic grasslands has most likely
had a profound effect on kit foxes inhabiting
these areas. With the majority of known kit fox
dens contained within the grassland habitat
(Arjo et al. 2003), kit foxes may be forced to
forage farther from denning sites and to main-
tain numerous den sites in order to hunt in
more profitable habitats (e.g., stable dunes).
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A l-year or even 2-year lag in numerical
response by kit foxes to an increase in precipi-
tation, and hence small mammals, has been
documented (White et al. 1996, Cipher et al.
2000, Dennis and Often 2000). This lag in
response may be due to a numerical lag in
response to prey abundance and the mon-
estrous cycle of the kit fox (Dennis and Often
2000). We did not find a correlation with
either current small mammal and leporid
numbers or numbers due to the lag response
produced by precipitation changes. Kit fox
reproductive rates, especially in 2001, were
similar to reproductive rates observed in the
1950s and 1960s, even though leporid densi-

" ties in May 2001 were lower than in previous
years. Some correlation between fox densities
and jackrabbit abundance from the previous
year was observed, as well as a correlation be-
tween pre-whelping fox densities and spring
small mammals. Several canid species, like
coyotes, are able to increase reproductive effort
to compensate for low densities (Ballard et al.
1987, Knowlton and Gese 1995, Windberg
1995). Kit fox reproductive rates on DPG
appear to be density dependent, though kit fox
densities have decreased from historical lev-
els. Lower numbers may be due to the reduc-
tion in available prey items (e.g., leporids or
kangaroo rats) and an increase in pressure
from competing predators. Not only is kit fox
density dependent upon reproductive rates,
but also survivorship and recruitment. Adult
survivorship in our study was similar to values
reported elsewhere (Standley et al. 1992, Walls
and White 1995, Spiegel and Disney 1996,
Cipher et al. 2000). Although reproductive
rates were favorable in the last couple of years,
juvenile recruitment into the DPG population
seems to be a more limiting factor.

Competition between sympatric canids is
well documented (Berg and Chesness 1978,
White et al. 1994, Peterson 1995, Arjo and
Pletscher 1999). However, some studies sug-
gest that removing coyotes does not affect kit
fox abundance unless removals are substantial
and sustained (Cipher and Scrivener 1992,
White and Garroted 1997). Coyotes were rare
during the 1950s and 1960s (Shippee and Jol-
lie 1953, Egoscue personal communication);
however, numbers have substantially increased
in the last 40 years. Predator-caused mortality
was the main source of kit fox mortality in sev-
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eral studies (Standley et al. 1992, Walls and
White 1995, Spiegel and Disney 1996, Cipher
et al. 2000). We did not find road mortality to

‘be significant compared to predator mortality,

unlike findings from the 1950s (Egoscue 1975).
Though coyotes contributed significantly to kit
fox mortality, we do not believe that coyote-
caused mortality is a proximate cause of de-
creasing kit fox density. However, competition
by coyotes may potentially limit available hab-
itat (Kozlowski 2005). Coexistence between
coyotes and kit or swift foxes (V velox) can be
facilitated through partitioning of resources
(e.g., prey or habitat) and year-round use of
dens (White et al. 1995, Warrick and Cipher
1998, Kitchen et al. 1999); however, the rela-
tionship is dependent upon coyote density
(Warrick and Cipher 1998). The impact of coy-
ote mortalities on a fox population may be
greater during periods of low prey availability
and an already-depressed fox population (Walls
and White 1995, Kitchen et al. 1999). Red foxes
often spatially segregate their home ranges
from competing coyotes, even in areas where

‘habitat is generally preferred (Voigt and Earle

1983, Major and Sherburne 1987, Harrison et
al. 1989). In areas where both red fox and gray
fox (Urocyon cinereoargenteus) co-occur with
coyotes, high dietary overlap can cause a
decrease in the red fox population, but habitat
segregation allows for coexisteiice with the
gray fox (Cipher 1993). Survival for the kit fox
population on DPG is dependent on better
recruitment and retention of juveniles in the
area. This, in turn, is dependent on maintain-
ing a healthy prey population. Ultimately, the
conservation of Great Basin habitats and the
elimination or substantial reduction of exotic

grassland invasions will allow a recovery of the

small mammal and leporid community.
Management actions that mitigate and re-
verse the trend toward exotic grasslands in-
clude aggressive fighting of wildfires, limiting
off-road maneuvering, replanting native or fire
resistant vegetation, removing man-made water

‘sources, and possibly conducting live-fire artil-

lery training in the cooler and more humid
spring, fall, and winter months. Although
potential competition from coyotes may still
exist without a substantial and sustained re-
duction in density of the larger carnivore, the
reestablishment of native habitat and small
mammal assemblages may mitigate competi-
tion for space and food.
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